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SUMMARY 

The circulatory subsonfc flow around an infinite circu- 
lar cylinder fs computed u.sPng the linearized pressure-volume 
relation, by a method developed in a previous report. For- 
mulas and graphs are given for the velocity and pressure dis- 
tributfons, the circulation, the lfft, and the dependence of 
the critical Mach number upon the position of the stagnation 
point. 

INTRODUCTION 

The rigorous solution of the differential equations Of 
a two-dimensional steady potential compressible gas flow in- 
volves considerable mathematical dffficulties. Numerical in- 
tegration is rather laborious and hardly ever yields results 
of a general character. Therefore, considerable attention 
was gfven to approximate analytical methods. 

Tchaplygin (reference 1) noticed that the differential 
equation of the velocity potential takes a rather simple form 
if the exponent Y in the polytropic pressnreldensity rela- 
tion is replaced by -1. The equation then becomes the well- 
known equation of a minimal surface. Furthermore, in the so- 
called hodograph plane, the equation may be transformed into 
the Laplace equation. The physical meaning of the linearized 
pressure-volume relation (V = -1) has been clarified by 
Busemann (reference 2) and especially by Van K&rm&n (refer- 
ence 3) and Tsfen (reference 4). They showed that using this 
relation amount6 to replacfng the actual pressure-volume curve 
by its tangent. Another way of ,justifying the use of the lin- 
earized equation of state.is indicated in this report. 

RESTRICTED 
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Tsien derived a formula transforming a given incompress- 
ible flow around a closed profile into a corn ressible flow 

4. (satisfying the linearized equatfon of state v around another 
(slfghtly distorted) profile. Howevsr, this formula is ap- 
plicable only to circulatfon-free flows. In a previous re- 

L) port (reference 5) the author developed formulas which per- 
mit the construction of circulatory flows as well. It has 
been shown that under very general conditions every incom- 
pressible flow yields a compressible flow and that &j& com- 
pressible flows may be obtained in this way. 

In the present re?ort,‘ this method is tested and illus- 
trated by computing the circulatory flow around a circular 
cylinder. (The circulation-free flow around a circular cyl- 
inder has.been treated by Tamada, 
(See reference 6.) 

who used Tsien's method.) 
The circular proffle, although of no 

technical Importance, has been chosen because of the simplic- 
ity of the computations and the possibility of comparing re- 
sults with those obtained by different methods. 

ft should be emphasized that the use of the linearized 
.P pressure-volume relation restricts the investigation to 

purely subsonic flows. 

c The investfgation, .conducted at Brown University, was 
sponsored by and carried out with the financial assistance 
of the Bational Advisory Committee for Aeronautics. 

The author is indebted to Pir, Charles Saltzer for val- 
uable assfstance. 

SYMBOLS 

a local speed of sound 

aO speed of sound at a stagnation point 

% lift coefficient 

G(l) normalized complex potential of an incompressible flow 
in the c-plane , . 

L lift per unit span 
0 

bi local Mach number 



BACA TN hTo. 970 3 

stream Mach number (Mach number at infinity) 

critical stream Mach number 

parameter defined by the equation, n = 

profile in thd z-plane (the plane of the compressible 
flow) 

ptiessure 

pressure at the stagnation point 

local speed of a compressible flow 

value. of q for which q = a 

speed of the compressible flow at infinity 

radius of the circular cylinder 

auxiliary parameter defined by the equation 
Bl = CO8 s/cos $ 

radius of curvature of the profile P 

radius of curvature of the profile r 

parameter defined by the equation 2r/(l - r21 = qs/ao 

pressure coefficient 

components of the local velocity of the compressible flow 

e =x+iy complex variable in the plane of the compressible 
flow 

ZpZ,*Z, auxiliary complex -.ariables 

. GIG absolute value of the argument of a stagnation point of 
the ccmpressible flow about a circular cylinder 
(angle of attack) 

B,S,B,,B, angles used to locate stagnation points of auxil-: 
iary flows in the c-plane 
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P. 
Y exponent in the polytropic relation 

. 

rC circtilation 'of the compressible flow 

ri 
circulation of the incompressible flow 

d angle defined by the equation 6 = ~r/2 - d 

c=t+in complex variable in the plane of the auxiliary 
incompressible flow 

A argument of a point on the circle m =R 

P parameter defined by the equation l.bs = (n - l>/(n + 1) 

n profile in the plane of the incompressible flow (c-plane) 

P density 
. 

PO stagnation density 

G absolute value of the argument of a stagnation point of 
the flow in the Z-plane 

@,3, angles used to locate points on the profile fl 

P velocity potential of the compressible flow 

x angle defined by the equation X= (n/2 - S)/('2 - n) 

W argument of a point on the cross section of the circular 
cylinder 

ANALYSIS c 

1. Reduction of the Problem to the Differential Equation 

of a Minimal Surface 

. 

Let u and v denote the x and y components of the 
velocity of a steady two-dimensional flow of a compressible 
fluid. 
CpkYl 

If the flow is irrotational, a velocity potential 
may be introduced,such that - 

u = a0 ?kf2 v 392 
ax = ao a* (1) 

. 
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P 
&here a, is the speed of sound at a stagnation point. The 
continuity equation yields the equation 

(2; 

P being the density. 

If the flab occupies the domain exterior to a closed 
profile P and at infinity approaches a uniform flow in the 
positive x directi-on, cp must satisfy the boundary condi- 
tions 

2Q2 ‘, 292-O as ax + 7 a0 ay x2 + y2 --f a (3) 

where q, is the speed at infinity (speed of the undisturbed 
flow), and 

a i?Q 

an ~0 on P (4) 

. ( a 
an 

denotes differentiation in the direction normal to the 

profile 

The speed of the flufd q is given by 

q2 =u 2 + v2 
= ao2 [(W + @>“3 

and the Kutta-Joukowski condition req.uires that 

q<- (5) 

It will be assumed that the pressure p and the density 
are connected by the relation 

=A+Bp Y 
s P (6) 

. 
where A, B, and Y are constants. For all physically im- 
portant cases 
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The standard value of Y far air is 1.405. 
Bernoulli's theorem imply that 

1 
Y = -1zK 

P P,l- 2 ( a0 2 > 

a 2 
= ao 

a_-1 2 
2 * 

Ma = (q/:ao12 

1 - y - l (d?,) 
2 

2 

Equation (6) and 

. 
(7) 

(8) 

(9) 

Here p. is the density at a stagnation point, a = dp/dp, 
the 3.ocal speed of sound and M = q/a, the local Mach number. 
Tt is seen that the flow fs subsonic as long as 

Q< P, = a0 (10) 

Equation (7) can be written as a relation (depending on 
the parameter 'Y) between the two dimensEonless quantities 
p/pa- and q/a,: 

&= 

Equation (2) can now be written as 

(11) 

,U.kL 1 aYj 
0 (2') 

c Expanding the right side of (11) into a power seriies Zn 
da, yields 
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-1 

* 

i 

-. 

* 

f($, Y)= 1 - $(&)s -I- 2 8. Y(E)& - + . . . 

. 
Evidently, for small values of da, the relation between p 
and q/a, is only slightly affected by the value of Y. In 
particular, if the actual value of Y is replaced by -1, the 
resulting error in p/p, is of the same order of magnitude 
as 

Y+1g4 
a ( > a0 

Table I gives the values of P/PO for Y = 1.405 and 
Y = -1 and for values of 9/a, from 0 to 0.912 (0.912 is 
the value of qmms /a0 for Y = 1.405). 

On the basis of the foregoing remarks it may be con- 
cluded that for flows where q/a is small only a slight 
error will be made if the actual'value of Y is replaced by 
-1 in (11). Since 

TABLE I.- DENSITY AS A FUNCTION OF SPEED 

q L a0 0 0.1 0.2 0.3 0.4 .0.5 0.6 ~0.7 o.g 0.9 .0.912 
t 

Y =1.405 
1 1 

& 1.000 0.995 0.980 0.956 0.922 o.880 o.e30 0.773 0.710 0.643 0.634 
I 

I Y = -1.000 I 

1 - 5 l.ooo,o.gg~ 0.980 o.ggr o.g2g,o*sgQ 0.858 0.820 0.7so 0.743 0.739 
I 

equation (2') becomes 
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This is the well-known equatfon of a.minimal surface, and its 
solution can be expressed in terms of analytic functions of 
a complex variable. 

After the valU88 of q/so. have been found by integrat- 
ing the approximate equation (12) under the boundary condi- 
tions (31, (41, and (5), the values of the density and the 
local Mach number must be determined by means of formulas 
(7) and (9) with the correct value of Y. 

The use of the approximate equation (12).can also be 
justified by the remark that the constants A and B can be 
determined so that the curve (in the p, p-plane) given by 
the linear pressure-volume relation 

B 
p=A+F (13) 

will be at some point tangent to the curve given by the actual 
pressure-density relation 

PP 
WY 

= PO PO -Y 

(see reference8 3 a&d 4). The linear pressure-volume relation 
was introduced by Tchaplygin and ha8 been used by Dusemann, 
Demtchenko, Van K&m&n, and Tsisn. 

2. Formulas for the Solution of the Approximate Problem 

In a previous report (see reference 5) a method was 
iven which permit8 the Construction of solutions of e uation 
12) satisfying the boundary conditfons (31, (41, and s 5). 

It ha8 been Shown that this method yields solution8 for all 
profile8 P pO88e88ing at most tW0 sharp edges. The only 
restrictive condition concerns the value of q&o which 

should not exceed P/- 
3 - = 0.866. 4 Now for y * 1.405, qb = 0.912. 

Thus, the method would fail only for profiles for which the 
maximum local 8Peed is very close to the speed of the undis- 
turbed flow - that is, for very thin profiles. 
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This method is based upon a transformation of an incom- 
pressible flow into a solution of equation (12). 

Let n be a closed profile in the t-plane, (t = t + IV) 
pOSSeSSing at most two edges. Let G(c) be a normalized corn-. 
plex potential (i.e. 
+ itstream function)j 

the function G = [velocity potential 
8UCh that the speed at infinity equals 

1) of an inCOmpreSSibl8 flow around the profile n ; G(c) 58 
an analytic function defined in the domain exterior to n and 
satisfies the conditions 

Im G = constant onfl 

as well as the Kutta-Joukowsky condition 

.IG 'I max < m 

(Im = imaginary part of). &et II be a real number such that 

l<n<2 

The function 

(2.01; =x+iy= n+l a% (14) 
2 r 

G~($-’ dc - n ; 
'. 

(the bar denote8 the conjugate complex quantity) maps the do- 
mafn exterior to n into a domain exterior to a closed pro- 
file P. The function 

cp=,/G aeG (15) 

(Re = real part of) considered. aS a function of x and y 
Satisfies the differential e uation (12) and the boundary 
conditions, (4), (5), and (6 , wh,ere 7 

(16) 

Thus cp may be COnSid8red as the potential of a compressible 
flow around P. The speed of the comoresaible flow (at a 
point z corresponding to a'point 5) is"given by 
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QChO iG t ( 5 ) 1. lb c -. = (17) 
n+l- (n - 1) P(fi"/" 

The angle between the direction of the compressible flow and 
the x-axis, 

is given by 

8 = $ arg G'(c) ' (18; 

(arg = argument of). In particular, the slope of the profile 
P is l/n times the slope of the profile n , at a correspond- 
ing point. If Rp denotes the radius of curvature of P at 
a point z and R, the radius of curvature at the corre- 
sponding point f oft-l ( then 

r RP = [ n y G*(c) 
I I 

Ll/n 
_ n ; l.G'!(c). 

.I P 
(19) 

The profile P can be constructed graphically using this 
information. 

phe prOOf of th08e assertions will be found in the re- 
port quoted above. 

Note that for values of n which are close to 1 (i.e., 
for small values of G/a,) the profile P will be slightly 
different from n . For,then,the coefficient of the first 

. integral in (14) is close to 1, the exponent of the integrand 
i8 close to 0, so that the fire? term on the right side of 
(14) i8 Cl080 t0 l, and the second term is Small compared to 

c the first. 

However, the SlOJ.388 Of P and n 
points) are different. 

(at corresponding 
-If it is desired that the profile P 
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should possess at the two stagnat,ion point6 angles PI and 
B 2, the profile I-! must possess at its stagnation points 
the angles n@1 and nb. 

L It Will be noted that the method do88 not yet permit the 
solution of the boundary value problem for a given profile. 
Bowever, it is possible to choose the llconjugate profile" n 
in such a manner, that the profile P will differ very little 
from a given profile. 

Remark: If G is a one-valued function (i.e., for a 
flow without circulation), the formulas (141, (15), (171, 
(181, and (19) can be replaced by the simpler relations which 
are equivalent to the formulas found by Tsien (see reference 
4) 

n-t& 2 =-- 
2 

r ? ; ', 
s 

G'(c)' d[ (201 

cp=Jz Be G (21) 

q= 
(22) 

8 = tan -= G'(t) (23) 

Bp = (24) 

However, if there is circulation, formula (20)'does not yield 
a closed profile. 

. 3. Incompressible Flow Yielding a Compressible Plow 

around a ITearly Circular Cylinder 
c 

The method described in the foregoing will be apulied 
presently to the construction of a circulatory compressible 

. 
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flow around a nearly circular profile P. It is natural to 
start .with a profile n consisting of an upper arc of the 
unit circle jtg = 1 and a lower arc of a circle which in- 
tersects the first arc a$ the points c = e-i6 and t =--8 * I.6 
and forms the angles nv with the first arc. (See fig. 1.1 
The center of the lower arc is situated at % = i(R, sin B 
- sin. 8.1 where 

B 6.tn-lln = (25) 

Its radius is equal to 

% = COB G/cos 8 

it may be assumed without loss of generality that 0<6c; 
'and R,<l. 

Let G(c) be the complex potential of an incompressible 
flow past 'n which possesses stagnation points at [ = 8 -I& 

and 5 = -e I.8 and has the velocity 1 at infinfty. 

-.I In order to compute G(c) the domain exterior to il is 
mapped conformally into the domain iZl > R in an. auxiliary 
Z-plane, by a transformation which takes 1 = 01 into Z=CE 
and satisfies the condition The 
points l = e-i* and c=-e 

fd/dt > 0 at infinity. 
are taken into the points 

z = Re-i6 and Z = -Beta, respectively, where 

Set 

0; 6 n-ln 
.2-n-2 - 

(27) 
-n2 5 

.R= CO8 6 (28) 
(2 - n)cos (r 

. 

then (dZ/d[)C=, = 1. Hence G(l), considered as a function 
of Z, is given by 

. rbZ+Ra + 2 Ri sin CF l'og Z . Z 
(29) 
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At a point 5 = ei@ of tiks upper arc of n the speed 
of the incompressible fluid is given by 

G’(P) = 2A2 fsin I\ + sin 01s (30) c 
/sin .@ + sin 61 

At a point g = i(R, sin 9 - sin 6) + Rlei* of the lover arc 
of n the speed of the incompressible flow is given by 

i(R, sin 9 - sin 6) c R,eiQ R2 = 2 -2 8inn + 'In cT ia (31) 
Rl sin qr + 8in B\ 

In these formulas 'fi is the argument of the point on the 
circle IZi = R into which the point [ is taken. The an- 
gle $A- u) can be determined by the formulas 

1 
/ 0-n 

tan &(A- a) = ' 4 I 
sin QQ + 6) 

- sin D 1 -(32) 
2 CO8 .cr CO8 $tQj - s? 

J 

-.. 
(for a point on the upper arc) and 

tan I(A- a> = - 
2 

(for a point 05 the lower‘arc). The details of the computa- 
tion will be found in the appendix. 

. 

The maximum of lG1j is reached at the top of the pro- 
file Tp, where Q =A = 3. Hence 

cos41h - 20) 
lG'lmax = 

A 2(1 + sin 6)R2 d 
cos4p - 2s) 

This is easily transformed into 
. 

IG’i max = 2 (1 - 
(2 - nj2 

sin G)cot' n/2 - ' 
2(2 - Ill 

(34) 
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The incompressible flow around II 18 now transformed 
into a compressible flow around the profile P 
plane). 

(in the z- 
The transformation is given by the formula8 of the 

preceding section. 
of etate, 

By virtue ef (17) and the actual equation 

if 
the maximal local Mach number will be equal to 1 

where r is determined from the equation 

2r I CI 
Q8b0 = J 

6 
---Y? 

= 
1 Y+l 

For Y = 1.405 

r = 0.3;75 . . . 

Thus, for a given 8, the maximal admissible n will be 
given by the relation 

(2 -2n12 
(1 - sin G)cot" w 

;S(2 - n) 
= (z 1 :)n'a rn 

set 

(35) 

then E f8 to be determined as the positive root of the 
equation 

A(n) sin 8 = tan E: 
2 -II 

(36) 

with 

(371 

. Numerical values of and 
(for Y = 1.405) are iiven inEtable 

determined by this equation 
II. It $8 seen that the 

value8 of n are vsry close to 1. 
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. 

I 

The radius of curvature of the profile P can be com- 
puted by means of formule (19). The result of thfs computa- 
tion for various values of n and 6 are given in table 
III. It will be noted that the radius of curvature of P 
is nearly constant. Therefore, the profile P is nearly a 
circle of unit radius; A point [ = ei@ of the upper arc 
is taken approximately into the point eiW with 

UJ Q n-lz =-+ (38) 
n n 2 

A point c w = i(Ri sin B - sfn 6) + R,e of the lower circle 
is taken +pDroximately into the point &b with 

w Q n-177 =-+ -- (39) 
n n 2 

-j 

b 

This follow8 from the fact that the slope of P at a point 
must equal l/n times the 81uge of 

;oint [. 
ll at a corresponding 

In particular, the stagnation points of the com- 
pressible flow will be situated at ewiQI and -eia I where 

a 6 n-ln =-,--- 
n n 2 

(401 

a will be positive for 6 > (n - l)sr/2. 

Greater accuracy could be achieved by taking as the 
radius of P the arithmetic mean of the value8 of Rpr or 
to obtain this radius by a graphical construction of P. 
However, this correction seem8 to be too insignfficant to 
justify the additional computational labor. Of course, the 
size of P is of no importance as far as the velocity dis- 
tribution is concerned. 

The graphical construction' of the profile P is shown 
in figure 2. Figure 3 contain8 several examples of profiles 

s P constructed by this method. The deviation of P from a 
circle is remarkably small. 

. 
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4. Critical Mach Number i 

The critical stream Mach number M.= c is deffned as ' 
the value of M, for which the maximal iocal Mach number 
equal s 1 .,, In order to corcpute the critical Mach number for 
a flow around a circle with the angle of attack a (the 
angle of attack being deffned as the negative argunrent of a 
stagnation point), set 

a= 
2-nn 2E --v (41) 

n 2 Is 

, and 

Ma t n= - 1 
=s c 

1 - $'Y - l)Q - 1) 
(42) 

where n and E are connected by equation (36). [Cf. (91, 
(161, and (401.) In thfs way the values of &,= as a 
function of a (for Y = 1.406) given in table IV have been 
computed. The relation between M,,, and a is plotted in 
figure 4. 

6. Velocity and Pressure Distribution 

In order to compute the velocity distribution of a com- 
pressible flow.along a cfrcular profile, set 

6 = na + (n - lJ$ (44) 

where M, is the desired stream Mach number and a the de- 
sired angle of attack. Then the dimensionless speed of the 
compressible flow at a point eiw 
formula (17). And 

of the circle is given by 
IG' I must be computed by means of for- 

mulas (30) and -(31). The first is to be used for $1 w >-a, 
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the second for - P<w< --&. 
2- - 

(I?ote that the velocity.dis- 
* 

l 

tribution is symmetrical with respect to the vertical axis.) 
The values of rjj and 3, corresponding to a given value of 
A are given by equations (38) and (39). In this way the 
velocity distribution plotted in ffgure 5 has been oomputed. 

Once the velocfty distribution is known, the pressure 
distribution may be determined by means of equations (7) and 
the actual equation of state. The dfxensionless pressure 
coefficient 

s 
PO - P ZZ 

* p, qm2 

is given by 

. 

For an incompressible flow 

a 
s = 

( > 
9 
q, - 

(45) 

(46) 

The values of S plotted in figure 6 have been computed by 
these formulas. 

6: Circulation and Lift 

By virtue of (1) the circulation of the compressible 
flow is equal to 

4 
rc = . 

4 
u dx c v dy = a0 

f 
dq 

. 
where the integration is extended over a closed curve around 
the profile P. BY (15) 

A 
rc = a,),/z{C'(.()dc 

. 
. integratfng over a closed curve around I?. But by (29) 

C'(c)dc = -4~rR sin 0 
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Introduce the values of R, 6, and 6 
and (40) to obtain the equation 

given by (27), (281, 

t rc = -4n z a0 co8 {na + (n - I)i}tan na 
2 -n 2 -n u 

or, by (16) 

ra = -4Trq, 1 CO8 
2 i- 

nc5 + (n - l)Eltan 2naL (47) - n - 21 -n 

n is given in terms of M, by formula (43). . 

For an incompressible flow with the same velocity at 
infinity and the same position of a stagnation point the cir- 
culation is given by 

r, = -4rrqc,, sin a 

c 

L 

The values of rcl ri are given in table V and plotted in 
figure 7. It will be seen that compressibility results in a 
larger circulation. The additional circulation due to com- 
pressibility increases as the Mach number increases but it 
decreases as the angle of attack increases. 

The Kutta-Joukowsky lift formula holds also for com- 
pressible flow. (See reference 7.) The lift (per unit span) 
is given by 

The dimensionless lift coefficient for a circle 

(r being the radius of the circle) is obtained from (47) 
and (161, noticing that this last formula holds for r = 1. 
Thus 

8rr CL = 2 _ p co9 + (n - 1); tan noG 
2 -n 

(48) 
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Here a is the angle of attack and n is determined by the 
stream Mach number. 
ible fluid 

(See equation (431.1 For an incompress- 

l CL = 8rr sin u (49) 

The values of % are given in table VI and plotted in fig- 
ure 8. 

7. Comparison with the K&r&n-Tsien Method 

The application of the linearised pressure-density rela- 
tion (Y = -1) to compressible flow problems consists of 
two steps: (1) the solution of a boundary value problem for 
the equation of the minimal surface, and (2) the interpreta- 
tion of the results, The first step is purely mathematical. 
Concerning the second, the following point of view has been 
adopted in the present report. The velocity field (i.e., 
the values of 'ho) computed under the assumption Y = -1 
is considered as an agnroxination to the velocity field of a 
flow satisfying the actual equation of state (with Y = 1.405) 
which has the same velocity a,t infinity. Accordingly, the 
stream Ma& number Mel is computed from h/a, by means of 
the formula (9) obtained from the actual equation of state. 
Von K&m& and Tsien (references 3 and 4) adopted a different 
point of view. They consider the fi'ctitious flow satisfying 
the linearized equation of state as an approximation to the 
flow of a compressible fluid possessing the same stream Mach 
number. Consequently, they compute the speed of the undie- 
turbed flow 
formula 

qcrr from the stream Mach number by means of the 

q," = ao2 JLn2 
1 - Ma2 

(50) 

which follows from the linearized' equation of state. (Fur- 
thermore, 
Y = -1 

they take over from the results obtained by setting 
only the values of S/S&) Other interpretations of 

the results are also possible. Their relative merits can be 
determined only by comparison with rigorous solutions. Tf . 
equation (50) is compared with equation (9). it is seen that 
the theoretical and numerical results of the present report 
can be adapted to the Von K&m&-Tsien point of view by re- 
placing the value pII= wherever it occurs by the value 
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. 
%(KLrm&-Tsien) = 

%a (51) 

f- 
l+Y+1M2 

2 9 

. This relation is plotted in figure 9b. It is seen that for 
the values of the stream Mach number occurring in flows around 
a circular cylinder the difference Setveen the two values of 
MOJ is quite small. 

For the case of a circulation-free flow equation (22) 
6 leads to the following velocity correction formula 

c 

so that, by (43) 

Q 
9, = 

Here 

qi 1 - P2 
si,l- ~2(qi/9i,cJ 

p2 = IL -1 
n+l 

(52) 

(531 

Qi is the Sp88d of the incompressible flow around the profile 
n (i.e., of the flow with the complex potential 0). If 
profile distortion (the difference between the profiles ll 
and. P) is neglected, qi may be taken as the speed of an 
incompressible flow around P. Formula (52) is the Van K&m&n- 
Tsien velocity correction formula, except that these authors 
obtain for CI, the value 

e 

in accordance with their method'of interoreting results ob- 
tained by setting Y = -1. 
in figure 9a.) 

(The values at pa are plotted 

Theoretioally, formula (52) may be employed for circula- 
tion-free flowa only. ~8v8rth8186s, it seems worth while to 
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try to use it for circulatory flows as well, Velocity dis- 
tributions computed by means of (52). are shown in figure 5. 
Figure 4 gives the values of the critical stream Mach number _ 
computed by means of (52). The agreement with results ob- 
tained by the method of this report is rather surprising. 
It is due to the fact that for circulatory flows around a 
circular grofile,the critical values of the stream Mach num- . 
ber are very low. Greater discrepancy should be 8xp8Cted in 
the case of slender profiles. 

Remark: The Glauert-Prandtl correction formula 3.s de- 
rived under the assumption of a nearly uniform flow and 
should not be used for a circular profile. 

8. Comparison with the Method of Successive Approximations 

The method of suocessive approximations has been applied 
to the circulatory flow past a circular cylinder. The first 
approximation to the velocity potential has been computed by 
Lamb (reference 81, who used the Rayleigh-Janzen scheme and 
by Tamatiko and Umemato (reference 91, who used the Poggi 
method. In figure 5 velocity distributions computed accord- 
ing to the formula given by Tamatiko and Umemato are plotted. 
E'igure 4 shows the values of the stream Mach number given by 
these authors. Tamatiko and Umemato also give a formula for 
the circulation 

-=1-i- r 
% 

( 
11, 1 
12 3 

sina a > Mm2 

This formula leads to results quite different from those ob- 
tained in the present report, 

The second approximation to the circulatory flow around 
a circular cylinder has been computed recently by Heaslit. 
(See reference 10.1 Ris numerical result6 are given in a 
form which does not permit an immediate comparison with the 
ones given in this report. 

. 

00NCLUDIBG REMARKS 

l 

It has been shown that the formula, transforming a cir- 
culatory inoompressible flow around a closed profile into a 
compressible flow (obeying the linearized equation of state) 
may be used for the effective approximate computat,ion of a 
purely subsonic flow around a profile closely approximating 
a given shape. 
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I. 
The following qualitatfve results have been obtained 

for the case of a circular cylinder. It may b8 expected that 
they hold also for Other shapes. 

c 1. The critfcal value of the stream Mach number H=,= 
decreases as the angle bf attack ct (for the case of a cir- 
cle: the argument Of the stagnation POfnt) inCr8aSeS. 
However, J,dN,c/da[ decreases as a increases. 

2. Compressfbility results in a higher value of the cir- 
culation (and lift) than the one predicted by the theory of 
incompressible fluids for the same position of the stagnation 
points. This effect fncreases as the stream Mach number in- 
creases. However, it beCOmeS less pronounced as the angle of 
attack increases. 

3. The Van K&m&-Tsien velocity correction formula 
(which is theoretical&y applicable only for flows with,out 
circulation) yields good approximate results for circulatory 
flows of small stream Mach number and small angle of attack: 

c 

Brown University, 
PrOPidence, R. I., September 1, 1944, 
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APPENDIX 

THE INGOMPRESSIBLE FLOW AROUND THE PROFILE il 

The transformation 

2, = P + 8" 

c 

(Al) 

takes the domain exterior to the .profile n (~9 fig. 1) 
into a sector bounded by two rays through the oriqin which 
make the angles (n/2 + S) and -(n/2 - 6) with the real 
axis. The transformation 

(A21 

. rotates this sector 80 that the lower ray coincides with the 
real axis. The transformation 
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z3 = a 
Z.l/Cs-n) (AZ) 

24 . 

. 
maps the rotated sector into the'upper half-plane. The point 
5 =m is taken into Z, = 1 by the first transformation, 

into Zs = e (n/2-6)1 by the second and into Z, = e iS 
by 

the third, where 
lT/2 - 6 

x= 2 -n 

Finally the transformation 

Z 
= Re'io z3 - e-IX 

z3 - eiX 
(A4) 

(R, D real constants) take6 the uoD8r half-plane of the Z, . . .- 
plane into the domain IZl > R, The point Z, = eLX (i.e., 

the point 5 = m) Is taken into Z = al. The two stagnation 
points, t = e-l6 and [ = -81s are taken into Z = Re -10 

and Z = -Re ia , respectively. 

Next, the constants R and Q must be determined so 
that 

A simple computation yields the values 

R= CO8 6 
(2 - n)cos cr' 

B=$X 

. 
Thus, formulas (27) and (28).are Verified. 

It follows that G( t) considered as a function of Z 
must have the form (3.5). 

In order to compute the correspondence.between the 
points of the profile ll and those of the circle 
note that by (Al)to (A4) 

IZt = R, 
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(AS) 

. Equation (A5) is that of a Von K&r&n-Trefftz transformation, 
as should have been expected. Let c = e i@ be a point on 
the upper circle of the profile 17 and Z = Red* the corre- 
sponding point on 121 = R. Substitute in (A51 and take ab- 
solute values: 

coy +I - 6) CO8 $(A- 0) 2-n 
= (~6) 

sin $CS + 6) sfn '$'A + al 

Thfs relation implfes formula (32) for the angle Qh - al. 
2 

Equation (A5) may be written in the form 

cl + 8, eiB = /Z + Reio J'-~ 

5, - R1 egiB ‘Z - Be -ioJ 
(A?) 

where R, and B are given by (25) and (26) and 

!h = t + itsin 6 - RI sin B) 

Let 5, = R, e fQ be a point of the lower arc of the profile 

fl and Z = Rei? the corresponding point of the circle 
IZI = R. Substituting in (87) and taking absolute values 

yields 

cos $Jr - PI CO8 +- CT) 2-n 
= (As> 

sin $(Jr + P) sin $(A+ (r) 

. This relation implies formula (33) for the angle $(A- 0). 

In order to compute the speed of the incompressible flow 
around I-I, lGt(c)(, at a point of the proffle, note that 



t 

. 
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For 2 = hiA, 

26 

(AlO> 

(All) 

Furthermore, for a point Z = Be iA corresponding to a point 
of the upper arc of fl (i.e., for -a<A<Tr+u) 

. 

and by (A61 

(A121 

dA I I = (29 
cos 6 'sin A + sin Q 

G n)cos cT I I 
(A131 

sin @ + sin 6 

By (AlO), (All), (Al2), and (813) 

lG1(ei@)[ = 2 cm2 6 (sin/i + sin crIa 

(2 - n12 cos2 cr jsin @ + sin 61 

Thfs is equation (30). 

Similarly, for a point Z =’ ReiA corresponding to a 
point of the lower arc of n (i.e., for B - TF <A < - a) 

By (A91 

dZ 
I I a 

R dA 
=B, q7 I I 

(614) 

dr\ I I CO8 B sin A + fin u 
I 

* 
Zij = (2 - n)coe D sin \cI + sin B (A151 

Thus, by (AlO), (All>, (A14), and (A151 

eiJ' - i(sin 6 - R, sin @) 
31 

2 cos2 j3 (sin A + sin ~1' 
= (2 - n)' ~0s' U lsin * + sin B I' 

This is formula (31). 



, 8 , I 

. 

"EKBm II.- SOmIm~oF lQuATIoE (3616) 

* 1 

11 1.022 1.024 1.026 1.028 1.030 1.032 a.034 1.036 1.038 1.040 

g 11.94o 16.45' lg.69 22.15' 24.21" 25.g5° 27.45’ 2s.7s” 29.95' 31.01' 

n 1.042 1.044 1.046 1.048 1.050 1.052 1.054 1.056 1.05s 1.060 

c 31.96' 32.82' 33.62’ 34.34’ 35.01’ 35.63’ 36.U’ 36.75’ 37.25’ 3;7J2' 

n 1.062 1.064 1.066 1.068 1.070 1.072 1.074 1.076 1.078 l.OSO 

E 3s.16O 3s.g” 3s.96’ 39.33’ 39.67’ 40.00~ 4o.y’ 40.60’ 40.88~ 41.15’ 
3 
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TABLE III 

Radii of curvature of the profiles P 

100 
1.021 
7.940 

.2 

100 
1.048 
5.42O 

.3 

11.4360 
1.068 

50 
,380 

20.2090 
1.050 

150 
.324 

. 

.l 

.998 

.998 

.999 
1.000 
1.002 
1.003 
1,005 
1.005 
1.004 
1.002 

.995 

.995 
1.000 
1.002 
1,007 
1.019 
1.030 
1.041 
1.048 
1.048 
1.034 
1.001 

iii 
900 
800 
700 

5 600 
g 400 500 

300 
200 
loo 

00 

1.001 
1.016 

.969 

.983 
1.000 
1.018 
1.034 
1.046 
1.050 
1.042 
1,001 

.830 

1.033 
1.050 
S.063 1.021 

1.022 
1.019 
1.006 

1.068 
1.058 
1.024 

.883 I - 100 
- 200 

R 
P 

R 
P 

.987 

.999 
-1.002 
1.002 
1.002 
1.002 
1.002 
1.001 
1.001 
1.001 

.827 

.998 
1.034 
1.046 
1.045 
1.037 
1.027 
1.017 
1.010 
1,008 

5 - 200 - 
g - 400 300 

cl - 500 
- 600 
- 700 

.- 800 
- 900 

.977 .972 
1.002 1.016 
1.009 1.030 
1.012 1.033 
1,011 1.030 
1.007 1.024 
1.005 1.018 
1.003 1.013 
1.003 1.012 

.960 
,991 

1.002 
1.004 
1.002 

.999 

.996 

.995 
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‘pBBI;E rv.- CRIl?IcBt STBmM lam immR AS A mcTIoN 

OF TE3 FOSITIO’N W TI33 EttCAQWION POIRT 

a 20 4O 6O @ loo 12O 14O 16O ls” 20~ 

$Jie 0.402 o.jq 0.373 0.360 0.34p 0.337 0.327 0.318 I 0.309 0.301 
~-~~~~ : 

a 22O 24" 26' 2g” PO 32’ 34' 36' 38 40” 

M -0 0*293 0.286 0.279 o-273 0.267 0.262 o-257 0.252 0.2443 0.244 
I 

a ~2" a0 I&" 48" 50' 52’ 54' 56' 

H crac 0.240 0.236 0.232 0.229 0.226 0.223 0.221 0.219 

. 

i 58’ 60' 

l--t--- 0.2l7 0.2l5 
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c 

1 

1 

I 

2 

4 

4 
L 

Ratio of the circulation of the compressible flow 

to the circulation of the incompressible flow. 

10 1.01489 1.03357 1.05984 1.09383 1.13570 1.18= 

20 1.01475 1.03325 1.05926 1.09290 1.13431 1.18366 

30 1.01461 1.03293 1.05869 1.09198 1.13293 1.18169 

40 1.01448 1.03262 1.05812 1.09106 1.13156 1.17975 

50 1.01434 '1.03231 1.05756 1,09015 1.13020 1.17782 

7Qo 1.01401 1.03155 1.05616 1.08790 1.12684 

100 1.01367 1.03079 .1.05477 1.08567 1.12352 

156 1.01302 1.02928 1.05203 1.08127 1.11696 

2Oo 1.01236 '1.02+'77 1.049m 1.07689 l.llO& L 

300 1.01102 1.02472 1.04377 1.06802 

400 1.00962 1.02153 1.03798 

450 1.00888. 1.01984 1.03494 
I 

TABLE VI 

'Lift Coefficient 

.lO .15 .20 .25 .a0 .35 

lo A452 .4534 .4649 .4798 .4982 .5201 

20 .8901 .9063 .9291 .9586 .9949 1.0382 

30 1.3346 .1.3587 1.3925 1.4363 1.4902 1.5543 

40 1.7786 1.8104 1.8551 1.9128 1.9838 2.0683 

50 2.2219 2.2612 2.3165 2.3879 2.4757 2.6800 

780 3.3264 3.3840 3.4647 3.5688 3.6966 

.oo 4.4239 4.4986 4.6033 4.7382 4.9033 

.5o 6.5895 6.6953 6.8433 7.0335 7.2656 

!OO 8.7021 8.8347 9.0197 9.2568 9.5453 

iO0 12.7049 12.8770 13.1164 13.4212 

ioo 16.3104 16.5028 16.7686 

L5o 17.9293 18.1241 18.3924 
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Figure 4.1 Critical stream.Mach number as a function of the 
position of the stagnation point. 
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Figure 8a.- Lift coefficient as a function of the position 
of the stagnation point. 
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